Back to Search
Start Over
Abrupt versus Gradual Spin-Crossover in FeII(phen)2(NCS)2 and FeIII(dedtc)3 Compared by X-ray Absorption and Emission Spectroscopy and Quantum-Chemical Calculations
- Source :
- Inorganic Chemistry. 54:11606-11624
- Publication Year :
- 2015
- Publisher :
- American Chemical Society (ACS), 2015.
-
Abstract
- Molecular spin-crossover (SCO) compounds are attractive for information storage and photovoltaic technologies. We compared two prototypic SCO compounds with Fe(II)N6 (1, [Fe(phen)2(NCS)2], with phen = 1,10-phenanthroline) or Fe(III)S6 (2, [Fe(dedtc)3], with dedtc = N,N'-diethyldithiocarbamate) centers, which show abrupt (1) or gradual (2) thermally induced SCO, using K-edge X-ray absorption and Kβ emission spectroscopy (XAS/XES) in a 8-315 K temperature range, single-crystal X-ray diffraction (XRD), and density functional theory (DFT). Core-to-valence and valence-to-core electronic transitions in the XAS/XES spectra and bond lengths change from XRD provided benchmark data, verifying the adequacy of the TPSSh/TZVP DFT approach for the description of low-spin (LS) and high-spin (HS) species. Determination of the spin densities, charge distributions, bonding descriptors, and valence-level configurations, as well as similar experimental and calculated enthalpy changes (ΔH), suggested that the varying metal-ligand bonding properties and deviating electronic structures converge to similar enthalpic contributions to the free-energy change (ΔG) and thus presumably are not decisive for the differing SCO behavior of 1 and 2. Rather, SCO seems to be governed by vibrational contributions to the entropy changes (ΔS) in both complexes. Intra- and intermolecular interactions in crystals of 1 and 2 were identified by atoms-in-molecules analysis. Thermal excitation of individual dedtc ligand vibrations accompanies the gradual SCO in 2. In contrast, extensive inter- and intramolecular phen/NCS vibrational mode coupling may be an important factor in the cooperative SCO behavior of 1.
Details
- ISSN :
- 1520510X and 00201669
- Volume :
- 54
- Database :
- OpenAIRE
- Journal :
- Inorganic Chemistry
- Accession number :
- edsair.doi.dedup.....552506638b94a35c206ac81898da8d8d