Back to Search
Start Over
Symmetric interpolation, Exchange lemma and Sylvester sums
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2017
- Publisher :
- Taylor & Francis, 2017.
-
Abstract
- The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
- Subjects :
- Discrete mathematics
Lemma (mathematics)
Pure mathematics
SYLVESTER DOUBLE SUMS
Algebra and Number Theory
Mathematics::Commutative Algebra
Matemáticas
SYMMETRIC LAGRANGE INTERPOLATION
SUBRESULTANTS
010102 general mathematics
Lagrange polynomial
purl.org/becyt/ford/1.1 [https]
010103 numerical & computational mathematics
Commutative Algebra (math.AC)
Mathematics - Commutative Algebra
01 natural sciences
Matemática Pura
purl.org/becyt/ford/1 [https]
symbols.namesake
symbols
FOS: Mathematics
Computer Science::Symbolic Computation
0101 mathematics
CIENCIAS NATURALES Y EXACTAS
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....554b6ea5986aefc153ae9ce78bc79a35
- Full Text :
- https://doi.org/10.1080/00927872.2016.1236121