Back to Search Start Over

Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic mutations

Authors :
Robert Blumenthal
Yun Huang
Jia Li
Kadir C. Akdemir
Jie Yang
Xiaodong Cheng
Xing Zhang
Janani Kumar
John R. Horton
Source :
Nucleic Acids Research
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.

Details

ISSN :
13624962 and 03051048
Volume :
49
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....555c3ee7cb5af6868591c3aa1888c003