Back to Search
Start Over
Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia
- Source :
- Brain, Hardies, K, de Kovel, C G F, Weckhuysen, S, Asselbergh, B, Geuens, T, Deconinck, T, Azmi, A, May, P, Brilstra, E, Becker, F, Barisic, N, Craiu, D, Braun, K P J, Lal, D, Thiele, H, Schubert, J, Weber, Y, van 't Slot, R, Nürnberg, P, Balling, R, Timmerman, V, Lerche, H, Maudsley, S, Helbig, I, Suls, A, Koeleman, B P C, De Jonghe, P, autosomal recessive working group of the EuroEPINOMICS RES Consortium, Hjalgrim, H & Møller, R S 2015, ' Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia ', Brain, vol. 138, no. 11, pp. 3238-3250 . https://doi.org/10.1093/brain/awv263, Brain, 138(11), 3238. Oxford University Press, Brain.
- Publication Year :
- 2015
-
Abstract
- The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry a heterozygous de novo mutation in one of the genes associated with the disease entity. Occasionally recessive mutations are identified: a recent publication described a distinct neonatal epileptic encephalopathy (MIM 615905) caused by autosomal recessive mutations in the SLC13A5 gene. Here, we report eight additional patients belonging to four different families with autosomal recessive mutations in SLC13A5. SLC13A5 encodes a high affinity sodium-dependent citrate transporter, which is expressed in the brain. Neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates; therefore they rely on the uptake of intermediates, such as citrate, to maintain their energy status and neurotransmitter production. The effect of all seven identified mutations (two premature stops and five amino acid substitutions) was studied in vitro, using immunocytochemistry, selective western blot and mass spectrometry. We hereby demonstrate that cells expressing mutant sodium-dependent citrate transporter have a complete loss of citrate uptake due to various cellular loss-of-function mechanisms. In addition, we provide independent proof of the involvement of autosomal recessive SLC13A5 mutations in the development of neonatal epileptic encephalopathies, and highlight teeth hypoplasia as a possible indicator for SLC13A5 screening. All three patients who tried the ketogenic diet responded well to this treatment, and future studies will allow us to ascertain whether this is a recurrent feature in this severe disorder.
- Subjects :
- Male
medicine.medical_specialty
Adolescent
anaplerosis
epileptic encephalopathy
NaCT
recessive disorder
SLC13A5
teeth hypoplasia
medicine.medical_treatment
Developmental Disabilities
Mutant
Genes, Recessive
Biology
medicine.disease_cause
Citric Acid
Epilepsy
Internal medicine
medicine
Journal Article
Humans
Genetic Predisposition to Disease
Child
Gene
Anodontia
Genetics
Mutation
Brain Diseases
Symporters
Citrate transport
medicine.disease
Hypoplasia
Pedigree
Endocrinology
HEK293 Cells
Epilepsy syndromes
Female
Neurology (clinical)
Human medicine
Ketogenic diet
Subjects
Details
- Language :
- English
- ISSN :
- 00068950
- Database :
- OpenAIRE
- Journal :
- Brain, Hardies, K, de Kovel, C G F, Weckhuysen, S, Asselbergh, B, Geuens, T, Deconinck, T, Azmi, A, May, P, Brilstra, E, Becker, F, Barisic, N, Craiu, D, Braun, K P J, Lal, D, Thiele, H, Schubert, J, Weber, Y, van 't Slot, R, Nürnberg, P, Balling, R, Timmerman, V, Lerche, H, Maudsley, S, Helbig, I, Suls, A, Koeleman, B P C, De Jonghe, P, autosomal recessive working group of the EuroEPINOMICS RES Consortium, Hjalgrim, H & Møller, R S 2015, ' Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia ', Brain, vol. 138, no. 11, pp. 3238-3250 . https://doi.org/10.1093/brain/awv263, Brain, 138(11), 3238. Oxford University Press, Brain.
- Accession number :
- edsair.doi.dedup.....5565c5aaa24601bf0e6b416cf03b28d9
- Full Text :
- https://doi.org/10.1093/brain/awv263