Back to Search Start Over

Ultrafast Preparation and Detection of Ring Currents in Single Atoms

Authors :
Markus Schöffler
Ingo Barth
Alexander Hartung
Olga Smirnova
Florian Trinter
K. Henrichs
K. Fehre
Sebastian Eckart
Martin Richter
Lothar Ph. H. Schmidt
Till Jahnke
Kunlong Liu
Reinhard Dörner
Nikolai Schlott
Felipe Morales
Misha Ivanov
Jonas Rist
Jivesh Kaushal
Maksim Kunitski
Source :
Nature Physics
Publication Year :
2018

Abstract

Quantum particles can penetrate potential barriers by tunneling (1). If that barrier is rotating, the tunneling process is modified (2,3). This is typical for electrons in atoms, molecules or solids exposed to strong circularly polarized laser pulses (4,5). Here we measure how the transmission probability through a rotating tunnel depends on the sign of the magnetic quantum number m of the electron and thus on the initial sense of rotation of its quantum phase. We further show that the electron keeps part of that rotary motion on its way through the tunnel by measuring m-dependent modification of the electron emission pattern. These findings are relevant for attosecond metrology as well as for interpretation of strong field electron emission from atoms and molecules (6-13) and directly demonstrates the creation of ring currents in bound states of ions with attosecond precision. In solids, this could open a way to inducing and controlling ring-current related topological phenomena (14).<br />19 pages, 6 figures, Nature Physics accepted

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature Physics
Accession number :
edsair.doi.dedup.....55b738e850e6fc42ca1f3851c999f42f