Back to Search Start Over

Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

Authors :
Gene C. Feldman
P. Jeremy Werdell
Scarla J. Weeks
Marites Canto
Zhongping Lee
John G. Wilding
Britta Schaffelke
Source :
Remote Sensing; Volume 4; Issue 12; Pages: 3781-3795, Remote Sensing, Vol 4, Iss 12, Pp 3781-3795 (2012)
Publication Year :
2012
Publisher :
Multidisciplinary Digital Publishing Institute, 2012.

Abstract

Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR), Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD) data to MODIS-Aqua (2002–2010) and SeaWiFS (1997–2010) satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012) for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m) occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%), with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of ecosystem responses to changes in water clarity.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing; Volume 4; Issue 12; Pages: 3781-3795
Accession number :
edsair.doi.dedup.....55cc32510f97a7b382baa7d8a236712a
Full Text :
https://doi.org/10.3390/rs4123781