Back to Search Start Over

Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China

Authors :
Yong Song
Tao Lang
Weicheng Wu
Lifeng Xie
Ziyu Lin
Wenheng Liu
Chongjian Shao
Xiaofeng Zhang
Xiangtong Liu
Yonghui Bai
Xiaolan Huang
Penghui Ou
Jie Li
Renxiang Chen
Ming Zhang
Guiliang Zhang
Xiaoting Zhou
Yaozu Qin
Yixuan Liu
Wenchao Huangfu
Yang Zhang
Xiao Fu
Jingheng Jiang
Shanling Peng
Source :
Sustainability, Vol 13, Iss 4830, p 4830 (2021), Sustainability, Volume 13, Issue 9
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.

Details

ISSN :
20711050
Volume :
13
Database :
OpenAIRE
Journal :
Sustainability
Accession number :
edsair.doi.dedup.....55f3a777072be9cd1109626ce2906235