Back to Search Start Over

CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Candida tropicalis

Authors :
Lixing Yan
Sha Zhu
Chen Chen
Congcong Wang
Sijia Chen
Xueqin Wang
Yanhui Yang
Jiaofan Shi
Weini Shi
Ruifang Li
Source :
Biochemical Journal
Publication Year :
2019
Publisher :
Portland Press Ltd., 2019.

Abstract

CGA-N9 is a peptide derived from the N-terminus of human chromogranin A comprising amino acids 47–55. Minimum inhibitory concentration (MIC) assays showed that CGA-N9 had antimicrobial activity and exhibited time-dependent inhibition activity against Candida tropicalis, with high safety in human red blood cells (HRBCs) and mouse brain microvascular endothelial cells (bEnd.3). According to the results of transmission electron microscopy (TEM), flow cytometry and confocal microscopy, CGA-N9 accumulated in cells without destroying the integrity of the cell membrane; the peptide was initially localized to the cell membrane and subsequently internalized into the cytosol. An investigation of the cellular internalization mechanism revealed that most CGA-N9 molecules entered the yeast cells, even at 4°C and in the presence of sodium azide (NaN3), both of which block all energy-dependent transport mechanisms. In addition, peptide internalization was affected by the endocytic inhibitors 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), cytochalasin D (CyD) and heparin; chlorpromazine (CPZ) also had some effect on CGA-N9 internalization. Similar results were obtained in the MIC assays, whereby the anticandidal activity of CGA-N9 was blocked to different degrees in the presence of EIPA, CyD, heparin or CPZ. Therefore, most CGA-N9 passes through the C. tropicalis cell membrane via direct cell penetration, whereas the remainder enters through macropinocytosis and sulfate proteoglycan-mediated endocytosis, with a slight contribution from clathrin-mediated endocytosis.

Details

ISSN :
14708728 and 02646021
Volume :
476
Database :
OpenAIRE
Journal :
Biochemical Journal
Accession number :
edsair.doi.dedup.....5608fc3b2a6ee32282ddf4fe76490320
Full Text :
https://doi.org/10.1042/bcj20180801