Back to Search
Start Over
Biomechanical Conditioning Enhanced Matrix Synthesis in Nucleus Pulposus Cells Cultured in Agarose Constructs with TGFβ
- Source :
- Journal of Functional Biomaterials, Journal of Functional Biomaterials, Vol 3, Iss 1, Pp 23-36 (2012), Journal of Functional Biomaterials; Volume 3; Issue 1; Pages: 23-36
- Publication Year :
- 2012
- Publisher :
- MDPI, 2012.
-
Abstract
- Biomechanical signals play an important role in normal disc metabolism and pathology. For instance, nucleus pulposus (NP) cells will regulate metabolic activities and maintain a balance between the anabolic and catabolic cascades. The former involves factors such as transforming growth factor-β (TGFβ) and mechanical stimuli, both of which are known to regulate matrix production through autocrine and paracrine mechanisms. The present study examined the combined effect of TGFβ and mechanical loading on anabolic activities in NP cells cultured in agarose constructs. Stimulation with TGFβ and dynamic compression reduced nitrite release and increased matrix synthesis and gene expression of aggrecan and collagen type II. The findings from this work has the potential for developing regenerative treatment strategies which could either slow down or stop the degenerative process and/or promote healing mechanisms in the intervertebral disc.
- Subjects :
- lcsh:R5-920
mechanical loading
Materials science
Anabolism
Catabolism
lcsh:Biotechnology
nucleus pulposus
Biomedical Engineering
TGFβ
matrix synthesis
intervertebral disc
Intervertebral disc
Stimulation
Article
Cell biology
Biomaterials
medicine.anatomical_structure
lcsh:TP248.13-248.65
Gene expression
medicine
Autocrine signalling
lcsh:Medicine (General)
Aggrecan
Transforming growth factor
Subjects
Details
- Language :
- English
- ISSN :
- 20794983
- Volume :
- 3
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Biomaterials
- Accession number :
- edsair.doi.dedup.....565eb7be48f58e0504fb1e703b71bd6a