Back to Search
Start Over
Modeling and nonlinear analysis of chaotic wave processes in electrochemically active neuronal media based on matrix decomposition
- Source :
- Informatika, Vol 17, Iss 3, Pp 7-24 (2020)
- Publication Year :
- 2020
- Publisher :
- The United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2020.
-
Abstract
- A general model of the origin and evolution of chaotic wave processes in electrochemically active neuronal media based on the proposed method of matrix decomposition of operators of nonlinear systems has been developed. The mathematical models of Hodgkin – Huxley and FitzHugh – Nagumo of an electrochemically active neuronal media are considered. The necessary conditions for self-organization of chaotic self-oscillations in the FitzHugh – Nagumo model are determined. Computer modeling based on the matrix decomposition of chaotic wave processes in electrochemically active neuronal media has shown the interaction of higher-order nonlinear processes leading to stabilization (to a finite value) of the amplitude of the chaotic wave process. Mathematically, this is expressed in the synchronous “counteraction” of nonlinear processes of even and odd orders in the general vector-matrix model of an electrochemically active neuronal media being in a chaotic mode. It is noted that the state of hard self-excitation of nonlinear oscillations in an electrochemically active neuronal media leads to the appearance of a chaotic attractor in the state space. At the same time, the proposed vector-matrix model made it possible to find more general conditions for the appearance and evolution of chaotic wave processes in comparison with the initial Landau turbulence model and, as a result, to explain the occurrence of consistent nonlinear phenomena in an electrochemically active neuronal media.
- Subjects :
- Chaotic
02 engineering and technology
01 natural sciences
Matrix decomposition
0203 mechanical engineering
necessary conditions for self-organization of self-oscillations
chaotic attractor
Attractor
matrix series in state-space
State space
FitzHugh–Nagumo model
Statistical physics
0101 mathematics
Nonlinear Oscillations
Physics
electrochemically active neuronal media
Mathematical model
Quantitative Biology::Neurons and Cognition
fitzhugh – nagumo model
010102 general mathematics
General Medicine
QA75.5-76.95
Nonlinear system
020303 mechanical engineering & transports
vector-matrix model of chaotic wave processes
Electronic computers. Computer science
mode of hard self-excitation of nonlinear oscillations
stabilization of the amplitude of chaotic process
Subjects
Details
- Language :
- Russian
- ISSN :
- 18160301
- Volume :
- 17
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Informatika
- Accession number :
- edsair.doi.dedup.....567aa3e2555d3f7cfb9196ae0289d3a7