Back to Search Start Over

Emotion Recognition Using KNN Classification for User Modeling and Sharing of Affect States

Authors :
Imen Tayari Meftah
Chokri Ben Amar
Nhan Le Thanh
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
REsearch Group in Intelligent Machines [Sfax] (REGIM-Lab)
École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS)
Springer
Berlin
Heidelberg
Huang, T.
Zeng, Z.
Li, C.
Leung, C.S.
Source :
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. Lecture Notes in Computer Science, 7663, Springer, pp.234-242, 2012, Neural Information Processing, 978-3-642-34475-6. ⟨10.1007/978-3-642-34475-6_29⟩, Neural Information Processing ISBN: 9783642344749, ICONIP (1)
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In this study, we propose a new method of recognizing emotional states from physiological signals. Our proposal uses signal processing techniques to analyze physiological signals. It permits to recognize not only the basic emotions (e.g., anger, sadness, fear) but also any kind of complex emotion, including simultaneous superposed or masked emotions. This method consists of two main steps: the training step and the detection step. In the First step, our algorithm extracts the features of emotion from the data to generate an emotion training data base. Then in the second step, we apply the k-nearest-neighbor classifier to assign the predefined classes to instances in the test set. The final result is defined as an eight components vector representing emotion in multidimensional space. Experiments show the efficiency of the proposed method in detecting basic emotion by giving hight recognition rate.

Details

Language :
English
ISBN :
978-3-642-34475-6
978-3-642-34474-9
ISBNs :
9783642344756 and 9783642344749
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. Lecture Notes in Computer Science, 7663, Springer, pp.234-242, 2012, Neural Information Processing, 978-3-642-34475-6. ⟨10.1007/978-3-642-34475-6_29⟩, Neural Information Processing ISBN: 9783642344749, ICONIP (1)
Accession number :
edsair.doi.dedup.....568bfc79f490dab0b43fa9b57c0dd642
Full Text :
https://doi.org/10.1007/978-3-642-34475-6_29⟩