Back to Search
Start Over
VAULT
- Source :
- ASPLOS
- Publication Year :
- 2018
- Publisher :
- Association for Computing Machinery (ACM), 2018.
-
Abstract
- Intel's SGX offers state-of-the-art security features, including confidentiality, integrity, and authentication (CIA) when accessing sensitive pages in memory. Sensitive pages are placed in an Enclave Page Cache (EPC) within the physical memory before they can be accessed by the processor. To control the overheads imposed by CIA guarantees, the EPC operates with a limited capacity (currently 128 MB). Because of this limited EPC size, sensitive pages must be frequently swapped between EPC and non-EPC regions in memory. A page swap is expensive (about 40K cycles) because it requires an OS system call, page copying, updates to integrity trees and metadata, etc. Our analysis shows that the paging overhead can slow the system on average by 5×, and other studies have reported even higher slowdowns for memory-intensive workloads. The paging overhead can be reduced by growing the size of the EPC to match the size of physical memory, while allowing the EPC to also accommodate non-sensitive pages. However, at least two important problems must be addressed to enable this growth in EPC: (i) the depth of the integrity tree and its cacheability must be improved to keep memory bandwidth overheads in check, (ii) the space overheads of integrity verification (tree and MACs) must be reduced. We achieve both goals by introducing a variable arity unified tree (VAULT) organization that is more compact and has lower depth. We further reduce the space overheads with techniques that combine MAC sharing and compression. With simulations, we show that the combination of our techniques can address most inefficiencies in SGX memory access and improve overall performance by 3.7×, relative to an SGX baseline, while incurring a memory capacity over-head of only 4.7%.
- Subjects :
- 010302 applied physics
Copying
business.industry
Computer science
Memory bandwidth
02 engineering and technology
01 natural sciences
Computer Graphics and Computer-Aided Design
020202 computer hardware & architecture
System call
Overhead (business)
Embedded system
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Paging
Page cache
business
Software
Subjects
Details
- ISSN :
- 15581160 and 03621340
- Volume :
- 53
- Database :
- OpenAIRE
- Journal :
- ACM SIGPLAN Notices
- Accession number :
- edsair.doi.dedup.....568ee0bdacc455b3c3015fa0219dae60
- Full Text :
- https://doi.org/10.1145/3296957.3177155