Back to Search Start Over

Position discovery for a system of bouncing robots

Authors :
Evangelos Kranakis
Adrian Kosowski
Oscar Morales-Ponce
Leszek Gąsieniec
Jurek Czyzowicz
Eduardo Pacheco
Département d'Informatique et d'Ingénierie (DII)
Université du Québec en Outaouais (UQO)
Department of Computer Science [Liverpool]
University of Liverpool
Networks, Graphs and Algorithms (GANG)
Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA)
Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
School of Computer Science [Ottawa]
Carleton University
Chalmers University of Technology [Göteborg]
School of Computer Science (Carleton, Ottawa)
ANR-11-BS02-0014,DISPLEXITY,Calculabilité et complexité en distribué(2011)
Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE)
Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Source :
INFORMATION AND COMPUTATION, Lecture Notes in Computer Science ISBN: 9783642336508, DISC, Information and Computation, Information and Computation, Elsevier, 2015, 244, pp.122-133. ⟨10.1016/j.ic.2015.07.005⟩, DISC-26th International Symposium on Distributed Computing, DISC-26th International Symposium on Distributed Computing, 2012, Salvador, Brazil. pp.341-355, ⟨10.1007/978-3-642-33651-5_24⟩, Information and Computation, 2015, 244, pp.122-133. ⟨10.1016/j.ic.2015.07.005⟩
Publication Year :
2015

Abstract

International audience; A collection of $n$ anonymous mobile robots is deployed on a unit-perimeter ring or a unit-length line segment. Every robot starts moving at constant speed, and bounces each time it meets any other robot or segment endpoint, changing its walk direction. We study the problem of {\em position discovery}, in which the task of each robot is to detect the presence and the initial positions of all other robots. The robots cannot communicate or perceive information about the environment in any way other than by bouncing. Each robot has a clock allowing it to observe the times of its bounces. The robots have no control on their walks, which are determined by their initial positions and the starting directions. Each robot executes the same \emph{position detection algorithm}, which receives input data in real-time about the times of the bounces, and terminates when the robot is assured about the existence and the positions of all the robots. Some initial configuration of robots are shown to be {\em infeasible} --- no position detection algorithm exists for them. We give complete characterizations of all infeasible initial configurations for both the ring and the segment, and we design optimal position detection algorithms for all feasible configurations. For the case of the ring, we show that all robot configurations in which not all the robots have the same initial direction are feasible. We give a position detection algorithm working for all feasible configurations. The cost of our algorithm depends on the number of robots starting their movement in each direction. If the less frequently used initial direction is given to $k \leq n/2$ robots, the time until completion of the algorithm by the last robot is $\frac{1}{2}\lceil \frac{n}{k} \rceil$. We prove that this time is optimal. By contrast to the case of the ring, for the unit segment we show that the family of infeasible configurations is exactly the set of so-called {\em symmetric configurations}. We give a position detection algorithm which works for all feasible configurations on the segment in time $2$, and this algorithm is also proven to be optimal.

Details

Language :
English
ISBN :
978-3-642-33650-8
ISSN :
08905401 and 10902651
ISBNs :
9783642336508
Database :
OpenAIRE
Journal :
INFORMATION AND COMPUTATION, Lecture Notes in Computer Science ISBN: 9783642336508, DISC, Information and Computation, Information and Computation, Elsevier, 2015, 244, pp.122-133. ⟨10.1016/j.ic.2015.07.005⟩, DISC-26th International Symposium on Distributed Computing, DISC-26th International Symposium on Distributed Computing, 2012, Salvador, Brazil. pp.341-355, ⟨10.1007/978-3-642-33651-5_24⟩, Information and Computation, 2015, 244, pp.122-133. ⟨10.1016/j.ic.2015.07.005⟩
Accession number :
edsair.doi.dedup.....56a0f39f1afb733624095d3548922e87
Full Text :
https://doi.org/10.1016/j.ic.2015.07.005⟩