Back to Search Start Over

Continual Self-Supervised Domain Adaptation for End-to-End Speaker Diarization

Authors :
Coria, Juan Manuel
Bredin, Hervé
Ghannay, Sahar
Rosset, Sophie
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Équipe Structuration, Analyse et MOdélisation de documents Vidéo et Audio (IRIT-SAMoVA)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Centre National de la Recherche Scientifique (CNRS)
Université Paris-Saclay under PhD contract number 2019-089
access to the HPC resources of IDRIS under the allocation AD011012177R1 made by GENCI
IEEE Speech and Language Processing Technical Committee
Source :
IEEE Spoken Language Technology Workshop (SLT 2022), IEEE Spoken Language Technology Workshop (SLT 2022), IEEE Speech and Language Processing Technical Committee, Jan 2023, Doha, Qatar. à paraître
Publication Year :
2023
Publisher :
IEEE, 2023.

Abstract

International audience; In conventional domain adaptation for speaker diarization, a large collection of annotated conversations from the target domain is required. In this work, we propose a novel continual training scheme for domain adaptation of an end-to-end speaker diarization system, which processes one conversation at a time and benefits from full self-supervision thanks to pseudo-labels. The qualities of our method allow for autonomous adaptation (e.g. of a voice assistant to a new household), while also avoiding permanent storage of possibly sensitive user conversations. We experiment extensively on the 11 domains of the DIHARD III corpus and show the effectiveness of our approach with respect to a pre-trained baseline, achieving a relative 17% performance improvement. We also find that data augmentation and a well-defined target domain are key factors to avoid divergence and to benefit from transfer.

Details

Database :
OpenAIRE
Journal :
2022 IEEE Spoken Language Technology Workshop (SLT)
Accession number :
edsair.doi.dedup.....56d2b4ceebd2d3a3e1dc45cce747aa9a
Full Text :
https://doi.org/10.1109/slt54892.2023.10023195