Back to Search
Start Over
Rankin–Eisenstein classes in Coleman families
- Source :
- Research in the Mathematical Sciences. 3
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- We show that the Euler system associated to Rankin--Selberg convolutions of modular forms, introduced in our earlier works with Lei and Kings, varies analytically as the modular forms vary in $p$-adic Coleman families. We prove an explicit reciprocity law for these families, and use this to prove cases of the Bloch--Kato conjecture for Rankin--Selberg convolutions.<br />Updated version, to appear in "Research in the Mathematical Sciences" (Robert Coleman memorial volume)
- Subjects :
- Pure mathematics
Conjecture
Mathematics - Number Theory
Mathematics::Number Theory
Applied Mathematics
010102 general mathematics
Modular form
11F85, 11F67, 11G40, 14G35
Reciprocity law
Mathematics::Spectral Theory
Euler system
16. Peace & justice
01 natural sciences
Theoretical Computer Science
Computational Mathematics
Mathematics (miscellaneous)
0103 physical sciences
FOS: Mathematics
Number Theory (math.NT)
010307 mathematical physics
0101 mathematics
QA
Mathematics::Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 21979847
- Volume :
- 3
- Database :
- OpenAIRE
- Journal :
- Research in the Mathematical Sciences
- Accession number :
- edsair.doi.dedup.....56d4283fe1f995ca7b5fc0335b388798
- Full Text :
- https://doi.org/10.1186/s40687-016-0077-6