Back to Search Start Over

A full circuit-based quantum algorithm for excited-states in quantum chemistry

Authors :
Wen, Jingwei
Wang, Zhengan
Chen, Chitong
Xiao, Junxiang
Li, Hang
Qian, Ling
Huang, Zhiguo
Fan, Heng
Wei, Shijie
Long, Guilu
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Utilizing quantum computer to investigate quantum chemistry is an important research field nowadays. In addition to the ground-state problems that have been widely studied, the determination of excited-states plays a crucial role in the prediction and modeling of chemical reactions and other physical processes. Here, we propose a full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian. Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process, reduces the resource cost caused by the interaction between different systems, and achieves faster convergence rate and stronger robustness against noise. The parameter updating for determining the next energy-level is naturally dependent on the energy measurement outputs of the previous energy-level and can be realized by only modifying the state preparation process of ancillary system, introducing little additional resource overhead. Numerical simulations of the algorithm with hydrogen and LiH molecule are presented. Furthermore, we offer an experimental demonstration of the algorithm on a superconducting quantum computing platform, and the results show a good agreement with theoretical expectations. The algorithm can be widely applied to various Hamiltonian spectrum determination problems on quantum computers.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....579eed59df49bbee13c2855765373517
Full Text :
https://doi.org/10.48550/arxiv.2112.14193