Back to Search Start Over

Homogamétisation d'algèbres pondérées

Authors :
Richard Varro
Cristián Mallol
Universidad de La Frontera, Temuco, Chile
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Algebra, Journal of Algebra, Elsevier, 2015, 427, pp.1-19. ⟨10.1016/j.jalgebra.2014.12.030⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

We generalize the gametization process introduced in [5] . For this we use not necessarily convex linear combinations of a baric algebra ( A , ω ) with the gametic algebra defined by the weight ω , we call these combinations homogametizations. After establishing a ponderability condition for a homogametization, we introduce the homogametization operators group and we define two actions of this group on the class of baric algebras and the non-commutative and non-associative algebra K 〈 X 〉 of polynomials with variables in X = { x 1 , … , x n } . When an algebra is defined by an identity, we show that this property is preserved after the group action on the algebra and the identity. We give explicit constructions of elements in K 〈 X 〉 which are invariants or universal invariants for this group action.

Details

ISSN :
00218693 and 1090266X
Volume :
427
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....57da23e0faf3c35e1936668817ea7b69
Full Text :
https://doi.org/10.1016/j.jalgebra.2014.12.030