Back to Search Start Over

Asymptotic normality of wavelet covariances and of multivariate wavelet Whittle estimators

Authors :
Gannaz, Irène
Probabilités, statistique, physique mathématique (PSPM)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Multivariate processes with long-range dependence properties can be encountered in many fields of application. Two fundamental characteristics in such frameworks are long-range dependence parameters and correlations between component time series. We consider multivariate long-range dependent linear processes, not necessarily Gaussian. We show that the covariances between the wavelet coefficients in this setting are asymptotically Gaussian. We also study the asymptotic distributions of the estimators of the long-range dependence parameter and the long-run covariance by a wavelet-based Whittle procedure. We prove the asymptotic normality of the estimators, and we provide an explicit expression for the asymptotic covariances. An empirical illustration of this result is proposed on a real dataset of rat brain connectivity.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....58389fe1e6aa17a054f505f6a491d981