Back to Search Start Over

Mn Diffusion and Reactive Diffusion in Ge: Spintronic Applications

Authors :
Vinh Le Thanh
Alain Portavoce
Lee Chow
Yauheni Rudzevich
Omar Abbes
Lisa Michez
Christophe Girardeaux
Sylvain Bertaina
Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Centre Interdisciplinaire de Nanoscience de Marseille (CINaM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Department of Physics
University of Central Florida [Orlando] (UCF)
Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Source :
Defect and Diffusion Forum, Defect and Diffusion Forum, 2015, 363, pp.56-61. ⟨10.4028/www.scientific.net/DDF.363.56⟩, Defect and Diffusion Forum, Trans Tech Publications, 2015, 363, pp.56-61. ⟨10.4028/www.scientific.net/DDF.363.56⟩
Publication Year :
2015
Publisher :
Trans Tech Publications, Ltd., 2015.

Abstract

In this paper, we report investigations concerning the fabrication of a diluted Ge (Mn) solution using solid state Mn diffusion, and Mn/Ge reactive diffusion for spintronic applications. The study of Mn diffusion shows that the quasi-totality of the incorporated Mn atoms occupies Ge substitutional sites and probably exhibits two negative elementary charges. The solubility limit of Mn in Ge is comprised between 0.7 and 0.9 % (T  600 °C). We show that substitutional Mn atoms are not ferromagnetic in Ge and consequently that Ge (Mn) diluted magnetic semiconductor can not be produced. Beside the ferromagnetic signal from Mn5Ge3, ferromagnetic signals detected in the samples could be always attributed to surface or bulk Mn-Ge clusters. Furthermore, we show that the CMOS Salicide process is potentially applicable to Mn5Ge3 nanolayer fabrication on Ge for spintronic applications. During Mn (thin-film)/Ge reaction, Mn5Ge3 is the first phase to form, being thermally stable up to 310 °C and exhibiting ferromagnetic properties up to TC ~ 300 K.

Details

ISSN :
16629507 and 10120386
Volume :
363
Database :
OpenAIRE
Journal :
Defect and Diffusion Forum
Accession number :
edsair.doi.dedup.....58a1065b44b38a785dc10b444b4d9886
Full Text :
https://doi.org/10.4028/www.scientific.net/ddf.363.56