Back to Search Start Over

A Novel Two-Dimensional Echocardiography Method to Objectively Quantify Aortic Valve Calcium and Predict Aortic Stenosis Severity

Authors :
Elliott M. Groves
Aamir Twing
Leon Frazin
Alex J. Auseon
Brody Slostad
Mayank M Kansal
Kevin Lee
Colin C. Hubbard
Source :
The American journal of cardiology. 156
Publication Year :
2021

Abstract

Aortic valve calcium (AVC) is a strong predictor of aortic stenosis (AS) severity and is typically calculated by multidetector computed tomography (MDCT). We propose a novel method using pixel density quantification software to objectively quantify AVC by two-dimensional (2D) transthoracic echocardiography (TTE) and distinguish severe from non-severe AS. A total of 90 patients (mean age 76 ± 10 years, 75% male, mean AV gradient 32 ± 11 mmHg, peak AV velocity 3.6 ± 0.6 m/s, AV area (AVA) 1.0 ± 0.3 cm2, dimensionless index (DI) 0.27 ± 0.08) with suspected severe aortic stenosis undergoing 2D echocardiography were retrospectively evaluated. Parasternal short axis aortic valve views were used to calculate a gain-independent ratio between the average pixel density of the entire aortic valve in short axis at end diastole and the average pixel density of the aortic annulus in short axis (2D-AVC ratio). The 2D-AVC ratio was compared to echocardiographic hemodynamic parameters associated with AS, MDCT AVC quantification, and expert reader interpretation of AS severity based on echocardiographic AVC interpretation. The 2D-AVC ratio exhibited strong correlations with mean AV gradient (r = 0.72, p

Details

ISSN :
18791913
Volume :
156
Database :
OpenAIRE
Journal :
The American journal of cardiology
Accession number :
edsair.doi.dedup.....59138df7280702b5a222c4f720193c90