Back to Search Start Over

Out-of-equilibrium dynamical equations of infinite-dimensional particle systems. II. The anisotropic case under shear strain

Authors :
Thibaud Maimbourg
Francesco Zamponi
Elisabeth Agoritsas
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Systèmes Désordonnés et Applications
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2019, 52 (33), pp.334001. ⟨10.1088/1751-8121/ab2b68⟩
Publication Year :
2019

Abstract

As an extension of the isotropic setting presented in the companion paper [J. Phys. A 52, 144002 (2019)], we consider the Langevin dynamics of a many-body system of pairwise interacting particles in $d$ dimensions, submitted to an external shear strain. We show that the anisotropy introduced by the shear strain can be simply addressed by moving into the co-shearing frame, leading to simple dynamical mean field equations in the limit ${d\to\infty}$. The dynamics is then controlled by a single one-dimensional effective stochastic process which depends on three distinct strain-dependent kernels - self-consistently determined by the process itself - encoding the effective restoring force, friction and noise terms due to the particle interactions. From there one can compute dynamical observables such as particle mean-square displacements and shear stress fluctuations, and eventually aim at providing an exact ${d \to \infty}$ benchmark for liquid and glass rheology. As an application of our results, we derive dynamically the 'state-following' equations that describe the static response of a glass to a finite shear strain until it yields.<br />Typo corrected in Eq. (47)

Details

Language :
English
ISSN :
17518113, 17518121, 09650393, 17425468, 03054470, and 02955075
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2019, 52 (33), pp.334001. ⟨10.1088/1751-8121/ab2b68⟩
Accession number :
edsair.doi.dedup.....5920960f017af28ee671d0d0453eaf49
Full Text :
https://doi.org/10.1088/1751-8121/ab2b68⟩