Back to Search Start Over

Regularities of semigroups, Carleson measures and the characterizations of BMO-type spaces associated with generalized Schrödinger operators

Authors :
Pengtao Li
Yuanyuan Hao
Kai Zhao
Source :
Banach J. Math. Anal. 13, no. 1 (2019), 1-25
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Let $\mathcal{L}=-\Delta+\mu$ be the generalized Schrödinger operator on $\mathbb{R}^{n},n\geq3$ , where $\Delta$ is the Laplacian and $\mu\notequiv0$ is a nonnegative Radon measure on $\mathbb{R}^{n}$ . In this article, we introduce two families of Carleson measures $\{d\nu_{h,k}\}$ and $\{d\nu_{P,k}\}$ generated by the heat semigroup $\{e^{-t\mathcal{L}}\}$ and the Poisson semigroup $\{e^{-t\sqrt{\mathcal{L}}}\}$ , respectively. By the regularities of semigroups, we establish the Carleson measure characterizations of BMO-type spaces $\mathrm{BMO}_{\mathcal{L}}(\mathbb{R}^{n})$ associated with the generalized Schrödinger operators.

Details

ISSN :
17358787
Volume :
13
Database :
OpenAIRE
Journal :
Banach Journal of Mathematical Analysis
Accession number :
edsair.doi.dedup.....593f1aa5c18bb7e57a4e67e588259317