Back to Search
Start Over
Brain graph synthesis by dual adversarial domain alignment and target graph prediction from a source graph
- Source :
- Medical image analysis. 68
- Publication Year :
- 2020
-
Abstract
- Developing predictive intelligence in neuroscience for learning how to generate multimodal medical data from a single modality can improve neurological disorder diagnosis with minimal data acquisition resources. Existing deep learning frameworks are mainly tailored for images, which might fail in handling geometric data (e.g., brain graphs). Specifically, predicting a target brain graph from a single source brain graph remains largely unexplored. Solving such problem is generally challenged with domain fracturecaused by the difference in distribution between source and target domains. Besides, solving the prediction and domain fracture independently might not be optimal for both tasks. To address these challenges, we unprecedentedly propose a Learning-guided Graph Dual Adversarial Domain Alignment (LG-DADA) framework for predicting a target brain graph from a source brain graph. The proposed LG-DADA is grounded in three fundamental contributions: (1) a source data pre-clustering step using manifold learning to firstly handle source data heterogeneity and secondly circumvent mode collapse in generative adversarial learning, (2) a domain alignment of source domain to the target domain by adversarially learning their latent representations, and (3) a dual adversarial regularization that jointly learns a source embedding of training and testing brain graphs using two discriminators and predict the training target graphs. Results on morphological brain graphs synthesis showed that our method produces better prediction accuracy and visual quality as compared to other graph synthesis methods.
- Subjects :
- Source data
Theoretical computer science
Radiological and Ultrasound Technology
Computer science
business.industry
Deep learning
Nonlinear dimensionality reduction
Brain
Health Informatics
Computer Graphics and Computer-Aided Design
Regularization (mathematics)
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Data acquisition
Embedding
Humans
Radiology, Nuclear Medicine and imaging
Computer Vision and Pattern Recognition
Artificial intelligence
business
030217 neurology & neurosurgery
Generative grammar
Geometric data analysis
Subjects
Details
- ISSN :
- 13618423
- Volume :
- 68
- Database :
- OpenAIRE
- Journal :
- Medical image analysis
- Accession number :
- edsair.doi.dedup.....595a190c972b498175c1439a33be6618