Back to Search
Start Over
Riemann hypothesis and quantum mechanics
- Source :
- Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2011, 44, pp.145203
- Publication Year :
- 2011
- Publisher :
- IOP Publishing, 2011.
-
Abstract
- In their 1995 paper, Jean-Beno\^{i}t Bost and Alain Connes (BC) constructed a quantum dynamical system whose partition function is the Riemann zeta function $\zeta(\beta)$, where $\beta$ is an inverse temperature. We formulate Riemann hypothesis (RH) as a property of the low temperature Kubo-Martin-Schwinger (KMS) states of this theory. More precisely, the expectation value of the BC phase operator can be written as $$\phi_{\beta}(q)=N_{q-1}^{\beta-1} \psi_{\beta-1}(N_q), $$ where $N_q=\prod_{k=1}^qp_k$ is the primorial number of order $q$ and $ \psi_b $ a generalized Dedekind $\psi$ function depending on one real parameter $b$ as $$ \psi_b (q)=q \prod_{p \in \mathcal{P,}p \vert q}\frac{1-1/p^b}{1-1/p}.$$ Fix a large inverse temperature $\beta >2.$ The Riemann hypothesis is then shown to be equivalent to the inequality $$ N_q |\phi_\beta (N_q)|\zeta(\beta-1) >e^\gamma \log \log N_q, $$ for $q$ large enough. Under RH, extra formulas for high temperatures KMS states ($1.5< \beta<br />Comment: version to appear in J. Phys. A: Math. Theor
- Subjects :
- Statistics and Probability
FOS: Physical sciences
General Physics and Astronomy
Expectation value
01 natural sciences
symbols.namesake
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
Quantum Algebra (math.QA)
Dedekind cut
Number Theory (math.NT)
0101 mathematics
010306 general physics
Mathematical Physics
Nicolas inequality
Mathematical physics
Physics
Quantum Physics
Mathematics - Number Theory
Operator (physics)
010102 general mathematics
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Function (mathematics)
Partition function (mathematics)
Riemann Hypothesis
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Riemann zeta function
Riemann hypothesis
Modeling and Simulation
Primorial numbers
[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
symbols
Bost-Connes model
Quantum Physics (quant-ph)
Primorial
Subjects
Details
- ISSN :
- 17518121 and 17518113
- Volume :
- 44
- Database :
- OpenAIRE
- Journal :
- Journal of Physics A: Mathematical and Theoretical
- Accession number :
- edsair.doi.dedup.....59636b0f2bbe0899880f637f14b05231
- Full Text :
- https://doi.org/10.1088/1751-8113/44/14/145203