Back to Search Start Over

Mutualistic Polydnaviruses Share Essential Replication Gene Functions with Pathogenic Ancestors

Authors :
Sarah A. Thomas
Jai H. Eum
Michael R. Strand
Gaelen R. Burke
Source :
PLoS Pathogens, PLoS Pathogens, Vol 9, Iss 5, p e1003348 (2013)
Publication Year :
2013
Publisher :
Public Library of Science, 2013.

Abstract

Viruses are usually thought to form parasitic associations with hosts, but all members of the family Polydnaviridae are obligate mutualists of insects called parasitoid wasps. Phylogenetic data founded on sequence comparisons of viral genes indicate that polydnaviruses in the genus Bracovirus (BV) are closely related to pathogenic nudiviruses and baculoviruses. However, pronounced differences in the biology of BVs and baculoviruses together with high divergence of many shared genes make it unclear whether BV homologs still retain baculovirus-like functions. Here we report that virions from Microplitis demolitor bracovirus (MdBV) contain multiple baculovirus-like and nudivirus-like conserved gene products. We further show that RNA interference effectively and specifically knocks down MdBV gene expression. Coupling RNAi knockdown methods with functional assays, we examined the activity of six genes in the MdBV conserved gene set that are known to have essential roles in transcription (lef-4, lef-9), capsid assembly (vp39, vlf-1), and envelope formation (p74, pif-1) during baculovirus replication. Our results indicated that MdBV produces a baculovirus-like RNA polymerase that transcribes virus structural genes. Our results also supported a conserved role for vp39, vlf-1, p74, and pif-1 as structural components of MdBV virions. Additional experiments suggested that vlf-1 together with the nudivirus-like gene int-1 also have novel functions in regulating excision of MdBV proviral DNAs for packaging into virions. Overall, these data provide the first experimental insights into the function of BV genes in virion formation.<br />Author Summary Microorganisms form symbiotic associations with animals and plants that range from parasitic (pathogens) to beneficial (mutualists). Although numerous examples of obligate, mutualistic bacteria, fungi, and protozoans exist, viruses are almost always considered to be pathogens. An exception is the family Polydnaviridae, which consists of large DNA viruses that are obligate mutualists of insects called parasitoid wasps. Prior studies show that polydnaviruses in the genus Bracovirus evolved approximately 100 million years ago from a group of viruses called nudiviruses, which are themselves closely related to a large family of insect pathogens called baculoviruses. Polydnaviruses are thus of fundamental interest for understanding the processes by which viruses can evolve into mutualists. In this study we characterized the composition of virus particles from Microplitis demolitor bracovirus (MdBV) and conducted functional experiments to assess whether BV genes share similar functions with related essential baculovirus replication genes. Our results indicate that several genes in MdBV retain ancestral functions, but select other genes have novel functions unknown from baculoviruses. Our results also provide the first experimental data on the function of polydnavirus replication genes and enhance understanding of the similarities between these viruses and their pathogenic ancestors.

Details

Language :
English
ISSN :
15537374 and 15537366
Volume :
9
Issue :
5
Database :
OpenAIRE
Journal :
PLoS Pathogens
Accession number :
edsair.doi.dedup.....5a875666a983bf7b3fc40fd6d96c437f