Back to Search Start Over

Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems

Authors :
Christopher S. Wilcox
Fredrik Palm
Maristela L. Onozato
Zaiming Luo
Source :
American Journal of Physiology-Heart and Circulatory Physiology. 293:H3227-H3245
Publication Year :
2007
Publisher :
American Physiological Society, 2007.

Abstract

Asymmetric ( NG, NG)-dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS). ADMA is a risk factor for endothelial dysfunction, cardiovascular mortality, and progression of chronic kidney disease. Two isoforms of dimethylarginine dimethylaminohydrolase (DDAH) metabolize ADMA. DDAH-1 is the predominant isoform in the proximal tubules of the kidney and in the liver. These organs extract ADMA from the circulation. DDAH-2 is the predominant isoform in the vasculature, where it is found in endothelial cells adjacent to the cell membrane and in intracellular vesicles and in vascular smooth muscle cells among the myofibrils and the nuclear envelope. In vivo gene silencing of DDAH-1 in the rat and DDAH +/− mice both have increased circulating ADMA, whereas gene silencing of DDAH-2 reduces vascular NO generation and endothelium-derived relaxation factor responses. DDAH-2 also is expressed in the kidney in the macula densa and distal nephron. Angiotensin type 1 receptor activation in kidneys reduces the expression of DDAH-1 but increases the expression of DDAH-2. This rapidly evolving evidence of isoform-specific distribution and regulation of DDAH expression in the kidney and blood vessels provides potential mechanisms for nephron site-specific regulation of NO production. In this review, the recent advances in the regulation and function of DDAH enzymes, their roles in the regulation of NO generation, and their possible contribution to endothelial dysfunction in patients with cardiovascular and kidney diseases are discussed.

Details

ISSN :
15221539 and 03636135
Volume :
293
Database :
OpenAIRE
Journal :
American Journal of Physiology-Heart and Circulatory Physiology
Accession number :
edsair.doi.dedup.....5b08bb51269df0a63a761ff2b5477feb
Full Text :
https://doi.org/10.1152/ajpheart.00998.2007