Back to Search Start Over

Emergency department use and Artificial Intelligence in Pelotas: design and baseline results

Authors :
Felipe Mendes Delpino
Lílian Munhoz Figueiredo
Ândria Krolow Costa
Ioná Carreno
Luan Nascimento da Silva
Alana Duarte Flores
Milena Afonso Pinheiro
Eloisa Porciúncula da Silva
Gabriela Ávila Marques
Mirelle de Oliveira Saes
Suele Manjourany Silva Duro
Luiz Augusto Facchini
João Ricardo Nickenig Vissoci
Thaynã Ramos Flores
Flávio Fernando Demarco
Cauane Blumenberg
Alexandre Dias Porto Chiavegatto Filho
Inácio Crochemore da Silva
Sandro Rodrigues Batista
Ricardo Alexandre Arcêncio
Bruno Pereira Nunes
Source :
Revista Brasileira de Epidemiologia, Volume: 26, Article number: e230021, Published: 10 MAR 2023
Publication Year :
2023
Publisher :
FapUNIFESP (SciELO), 2023.

Abstract

RESUMO Objetivo: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from the urban area of Pelotas, Southern Brazil. Methods: The study is entitled “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Between September and December 2021, a baseline was carried out with participants. A follow-up was planned to be conducted after 12 months in order to assess the use of urgent and emergency services in the last year. Afterwards, machine learning algorithms will be tested to predict the use of urgent and emergency services over one year. Results: In total, 5,722 participants answered the survey, mostly females (66.8%), with an average age of 50.3 years. The mean number of household people was 2.6. Most of the sample has white skin color and incomplete elementary school or less. Around 30% of the sample has obesity, 14% diabetes, and 39% hypertension. Conclusion: The present paper presented a protocol describing the steps that were and will be taken to produce a model capable of predicting the demand for urgent and emergency services in one year among residents of Pelotas, in Rio Grande do Sul state. RESUMO Objetivo: Descrever os resultados iniciais da linha de base de um estudo de base populacional, bem como um protocolo para avaliar o desempenho de diferentes algoritmos de aprendizado de máquina, com o objetivo de predizer a demanda de serviços de urgência e emergência em uma amostra representativa de adultos da zona urbana de Pelotas, no Sul do Brasil. Métodos: O estudo intitula-se “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Entre setembro e dezembro de 2021, foi realizada uma linha de base com os participantes. Está previsto um acompanhamento após 12 meses para avaliar a utilização de serviços de urgência e emergência no último ano. Em seguida, serão testados algoritmos de machine learning para predizer a utilização de serviços de urgência e emergência no período de um ano. Resultados: No total, 5.722 participantes responderam à pesquisa, a maioria do sexo feminino (66,8%), com idade média de 50,3 anos. O número médio de pessoas no domicílio foi de 2,6. A maioria da amostra tem cor da pele branca e ensino fundamental incompleto ou menos. Cerca de 30% da amostra estava com obesidade, 14% com diabetes e 39% eram hipertensos. Conclusão: O presente trabalho apresentou um protocolo descrevendo as etapas que foram e serão tomadas para a produção de um modelo capaz de prever a demanda por serviços de urgência e emergência em um ano entre moradores de Pelotas, no estado do Rio Grande do Sul.

Details

ISSN :
19805497 and 1415790X
Volume :
26
Database :
OpenAIRE
Journal :
Revista Brasileira de Epidemiologia
Accession number :
edsair.doi.dedup.....5b173eacd9da0ad76d87670e61378862