Back to Search Start Over

HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1

Authors :
Steven G. Self
Peter B. Gilbert
Helen Horton
Nicole Frahm
Lawrence Corey
Danilo R. Casimiro
M. Juliana McElrath
Hasan Ahmed
Susan Buchbinder
David Friedrich
Tomer Hertz
Barney S. Graham
Michael N. Robertson
Source :
PLoS Pathogens, Vol 9, Iss 6, p e1003404 (2013), PLoS Pathogens
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.<br />Author Summary The HIV epidemic is a major global health challenge leading to more than 1.8 million deaths annually, and despite significant efforts, the search for an efficacious and safe vaccine continues. Several candidate vaccines were designed to elicit CD8+ T-cell responses and were based on using recombinant Adenovirus serotype 5 (rAd-5) vector that expresses HIV-derived antigens. While none of these vaccines had protective effects, they provide an opportunity to study vaccine-induced T-cell responses on a population level. Here, we analyze data from the three largest epitope mapping studies performed in three clinical trials testing two rAd-5 vaccines. We find that vaccine-induced responses tend to cluster in “epitope hotspots” and that these hotspots are different for each vaccine and more surprisingly in two different vaccine trials testing the same vaccine. We also compared vaccine-induced hotspots to those elicited by natural infection and found that some of the vaccine-induced hotspots are not observed in natural infection. Finally, we show that epitope prediction methods can be useful for predicting vaccine induced hotspots based on participants HLA alleles.

Details

Language :
English
ISSN :
15537374 and 15537366
Volume :
9
Issue :
6
Database :
OpenAIRE
Journal :
PLoS Pathogens
Accession number :
edsair.doi.dedup.....5b1a4be4f53f869e0536309403f75c98