Back to Search Start Over

Au-dessous de SpecZ

Authors :
Michel Vaquié
Bertrand Toën
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of K-theory, Journal of K-theory, 2009, 3 (3), pp.437-500. ⟨10.1017/is008004027jkt048⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

In this article we use the theories of relative algebraic geometry and of homotopical algebraic geometry (cf. [HAGII]) to construct some categories of schemes defined under Specℤ. We define the categories of ℕ-schemes, 1-schemes, -schemes, +-schemes and 1-schemes, where (from an intuitive point of view) ℕ is the semi-ring of natural numbers, 1 is the field with one element, is the ring spectra of integers, + is the semi-ring spectra of natural numbers and 1 is the ring spectra with one element. These categories of schemes are linked together by base change functors, and all of them have a base change functor to the category of ℤ-schemes. We show that the linear group Gln and the toric varieties can be defined as objects in these categories.

Details

Language :
French
ISSN :
17550696, 18652433, and 18655394
Database :
OpenAIRE
Journal :
Journal of K-theory, Journal of K-theory, 2009, 3 (3), pp.437-500. ⟨10.1017/is008004027jkt048⟩
Accession number :
edsair.doi.dedup.....5b341650134c1fa1faeed60c8bf4c663
Full Text :
https://doi.org/10.1017/is008004027jkt048⟩