Back to Search Start Over

Forecasting for Grid and Cloud Computing On-Demand Resources Based on Pattern Matching

Authors :
Adrian Muresan
Frédéric Desprez
Eddy Caron
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Algorithms and Scheduling for Distributed Heterogeneous Platforms (GRAAL)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Algorithms and Software Architectures for Distributed and HPC Platforms (AVALON)
ANR-08-SEGI-0025,SPADES,Plateforme de Services Pour Architecture Petascale et DistribuéES.(2008)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
IEEE CloudCom 2010, IEEE CloudCom 2010, Nov 2010, Indianapolis, Indiana, USA, United States. ⟨10.1109/CloudCom.2010.65⟩, CloudCom
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; The Cloud phenomenon brings along the cost-saving benefit of dynamic scaling. As a result, the question of efficient resource scaling arises. Prediction is necessary as the virtual resources that Cloud computing uses have a setup time that is not negligible. We propose an approach to the problem of workload prediction based on identifying similar past occurrences of the current short-term workload history. We present in detail the Cloud client resource auto-scaling algorithm that uses the above approach to help when scaling decisions are made, as well as experimental results by using real-world traces from Cloud and Grid platforms. We also present an overall evaluation of this approach, its potential and usefulness for enabling efficient auto-scaling of Cloud user resources.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE CloudCom 2010, IEEE CloudCom 2010, Nov 2010, Indianapolis, Indiana, USA, United States. ⟨10.1109/CloudCom.2010.65⟩, CloudCom
Accession number :
edsair.doi.dedup.....5b3d32e220d028e403411d768ad79c1d
Full Text :
https://doi.org/10.1109/CloudCom.2010.65⟩