Back to Search Start Over

Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution

Authors :
Niklas Klusch
Maximilian Dreimann
Jennifer Senkler
Nils Rugen
Werner Kühlbrandt
Hans-Peter Braun
Source :
Nature Plants
Publication Year :
2023

Abstract

Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III2 with a co-purified ubiquinone in the QO site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane.

Subjects

Subjects :
Plant Science

Details

Language :
English
Database :
OpenAIRE
Journal :
Nature Plants
Accession number :
edsair.doi.dedup.....5b8681cd8bc7382a467abcd0a171776e