Back to Search Start Over

Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy

Authors :
Ravindra Pandey
Janet Morgan
Masayuki Shibata
Ting-Hsiu Liu
Avinash Srivatsan
Manivannan Ethirajan
Shipra Dubey
Suresh K. Pandey
Xiang Zheng
Joseph R. Missert
Source :
Molecular pharmaceutics. 8(4)
Publication Year :
2011

Abstract

The α(v)β(3) integrin receptor plays an important role in human metastasis and tumor-induced angiogenesis. Cyclic Arg-Gly-Asp (cRGD) peptide represents a selective α(v)β(3) integrin ligand that has been extensively used for research, therapy, and diagnosis of neoangiogenesis. For developing photosensitizers with enhanced PDT efficacy, we here report the synthesis of a series of bifunctional agents in which the 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide a (HPPH), a chlorophyll-based photosensitizer, was conjugated to cRGD and the related analogues. The cell uptake and in vitro PDT efficacy of the conjugates were studied in α(v)β(3) integrin overexpressing U87 and 4T1 cell lines whereas the in vivo PDT efficacy and fluorescence-imaging potential of the conjugates were compared with the corresponding nonconjugated photosensitizer HPPH in 4T1 tumors. Compared to HPPH, the HPPH-cRGD conjugate in which the arginine and aspartic acid moieties were available for binding to two subunits of α(v)β(3) integrin showed faster clearance, enhanced tumor imaging and enhanced PDT efficacy at 2-4 h postinjection. Molecular modeling studies also confirmed that the presence of the HPPH moiety in HPPH-cRGD conjugate does not interfere with specific recognition of cRGD by α(v)β(3) integrin. Compared to U87 and 4T1 cells the HPPH-cRGD showed significantly low photosensitizing efficacy in A431 (α(v)β(3) negative) tumor cells, suggesting possible target specificity of the conjugate.

Details

ISSN :
15438392
Volume :
8
Issue :
4
Database :
OpenAIRE
Journal :
Molecular pharmaceutics
Accession number :
edsair.doi.dedup.....5bd6f9d4b5a0cc4cf02193c0fdc8611b