Back to Search
Start Over
Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans
- Source :
- Molecular Microbiology, 39, 145-157, Molecular Microbiology 39 (2001)
- Publication Year :
- 2001
- Publisher :
- Wiley, 2001.
-
Abstract
- In filamentous fungi, glycerol biosynthesis has been proposed to play an important role during conidiospore germination and in response to a hyperosmotic shock, but little is known about the genes involved. Here, we report on the characterization of the major Aspergillus nidulans glycerol 3-phosphate dehydrogenase (G3PDH)-encoding gene, gfdA. G3PDH is responsible for the conversion of dihydroxyacetone phosphate (DHAP) into glycerol 3-phosphate (G3P), which is subsequently converted into glycerol by an as yet uncharacterized phosphatase. Inactivation of gfdA does not abolish glycerol biosynthesis, showing that the other pathway from DHAP, via dihydroxyacetone (DHA), to glycerol is also functional in A. nidulans. The gfdA null mutant displays reduced G3P levels and an osmoremediable growth defect on various carbon sources except glycerol. This growth defect is associated with an abnormal hyphal morphology that is reminiscent of a cell wall defect. Furthermore, the growth defect at low osmolarity is enhanced in the presence of the chitin-interacting agent calcofluor and the membrane-destabilizing agent sodium dodecyl sulphate (SDS). As inactivation of gfdA has no impact on phospholipid biosynthesis or glycolytic intermediates levels, as might be expected from reduced G3P levels, a previously unsuspected link between G3P and cell wall integrity is proposed to occur in filamentous fungi.
- Subjects :
- Hyphal growth
Molecular Sequence Data
Dihydroxyacetone
Glycerolphosphate Dehydrogenase
Dehydrogenase
Microbiology
Aspergillus nidulans
chemistry.chemical_compound
Cell Wall
Osmotic Pressure
Microbiologie
DHAP
Glycerol
Life Science
Amino Acid Sequence
Molecular Biology
Phospholipids
VLAG
Dihydroxyacetone phosphate
Glycerol-3-Phosphate Dehydrogenase (NAD+)
Sequence Homology, Amino Acid
biology
Genetic Complementation Test
Cell Differentiation
Spores, Fungal
NAD
biology.organism_classification
Growth Inhibitors
Glycerol-3-phosphate dehydrogenase
chemistry
Biochemistry
Dihydroxyacetone Phosphate
Genes, Bacterial
Glycerophosphates
Mutation
Gene Deletion
Subjects
Details
- ISSN :
- 13652958 and 0950382X
- Volume :
- 39
- Database :
- OpenAIRE
- Journal :
- Molecular Microbiology
- Accession number :
- edsair.doi.dedup.....5bf690ee800de4578ea639b3be7480e2
- Full Text :
- https://doi.org/10.1046/j.1365-2958.2001.02223.x