Back to Search Start Over

Blood Pressure Prediction by a Smartphone Sensor using Fully Convolutional Networks

Authors :
Jiyong Jang
Sungroh Yoon
Sanghyun Baek
Sung-Hwan Cho
Jong Min Choi
Source :
EMBC
Publication Year :
2020

Abstract

Heart disease and stroke are the leading causes of death worldwide. High blood pressure greatly increases the risk of heart disease and stroke. Therefore, it is important to control blood pressure (BP) through regular BP monitoring; as such, it is necessary to develop a method to accurately and conveniently predict BP in a variety of settings. In this paper, we propose a method for predicting BP without feature extraction using fully convolutional neural networks (CNNs). We measured single multi-wave photoplethysmography (PPG) signals using a smartphone. To find an effective wavelength of PPG signals for the generation of accurate BP measurements, we investigated the BP prediction performance by changing the combinations of the input PPG signals. Our CNN-based BP predictor yielded the best performance metrics when a green PPG time signal was used in combination with an instantaneous frequency signal. This combination had an overall mean absolute error (MAE) of 5.28 and 4.92 mmHg for systolic and diastolic BP, respectively. Thus, our CNN-based approach achieved comparable results to other approaches that use a single PPG signal.

Details

ISSN :
26940604
Volume :
2020
Database :
OpenAIRE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accession number :
edsair.doi.dedup.....5c09a81708adb228b74f90e9be2e986a