Back to Search Start Over

Statistical classifiers for diagnosing disease from immune repertoires: a case study using multiple sclerosis

Authors :
Benjamin Greenberg
Lindsay G. Cowell
Inimary T. Toby
Jared Ostmeyer
William Rounds
Nancy L. Monson
Scott Christley
Source :
BMC Bioinformatics, Vol 18, Iss 1, Pp 1-10 (2017), BMC bioinformatics, vol 18, iss 1, BMC Bioinformatics
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Background Deep sequencing of lymphocyte receptor repertoires has made it possible to comprehensively profile the clonal composition of lymphocyte populations. This opens the door for novel approaches to diagnose and prognosticate diseases with a driving immune component by identifying repertoire sequence patterns associated with clinical phenotypes. Indeed, recent studies support the feasibility of this, demonstrating an association between repertoire-level summary statistics (e.g., diversity) and patient outcomes for several diseases. In our own prior work, we have shown that six codons in VH4-containing genes in B cells from the cerebrospinal fluid of patients with relapsing remitting multiple sclerosis (RRMS) have higher replacement mutation frequencies than observed in healthy controls or patients with other neurological diseases. However, prior methods to date have been limited to focusing on repertoire-level summary statistics, ignoring the vast amounts of information in the millions of individual immune receptors comprising a repertoire. We have developed a novel method that addresses this limitation by using innovative approaches for accommodating the extraordinary sequence diversity of immune receptors and widely used machine learning approaches. We applied our method to RRMS, an autoimmune disease that is notoriously difficult to diagnose. Results We use the biochemical features encoded by the complementarity determining region 3 of each B cell receptor heavy chain in every patient repertoire as input to a detector function, which is fit to give the correct diagnosis for each patient using maximum likelihood optimization methods. The resulting statistical classifier assigns patients to one of two diagnosis categories, RRMS or other neurological disease, with 87% accuracy by leave-one-out cross-validation on training data (N = 23) and 72% accuracy on unused data from a separate study (N = 102). Conclusions Our method is the first to apply statistical learning to immune repertoires to aid disease diagnosis, learning repertoire-level labels from the set of individual immune repertoire sequences. This method produced a repertoire-based statistical classifier for diagnosing RRMS that provides a high degree of diagnostic capability, rivaling the accuracy of diagnosis by a clinical expert. Additionally, this method points to a diagnostic biochemical motif in the antibodies of RRMS patients, which may offer insight into the disease process. Electronic supplementary material The online version of this article (10.1186/s12859-017-1814-6) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
14712105
Volume :
18
Issue :
1
Database :
OpenAIRE
Journal :
BMC Bioinformatics
Accession number :
edsair.doi.dedup.....5ca3a725346e8776b0595d69ec0cf523