Back to Search Start Over

A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group

Authors :
Enrico Valdinoci
Andrea Pinamonti
Source :
Annales Academiae Scientiarum Fennicae Mathematica
Publication Year :
2012
Publisher :
Finnish Academy of Science and Letters, 2012.

Abstract

We prove that, if E is the Engel group and u is a stable solution of ∆Eu = f(u), then ˆ {∇Eu 6=0}  |∇Eu|2 {( p + 〈 (Hu) ν, v 〉 |∇Eu| )2 + h } − J   η ≤ ˆ E |∇Eη||∇Eu| for any test function η ∈ C∞ 0 (E). Here above, h is the horizontal mean curvature, p is the imaginary curvature and J := 2(X3X2uX1u−X3X1uX2u) + (X4u)(X1u−X2u) This can be interpreted as a geometric Poincare inequality, extending the work of [21, 22, 13] to stratified groups of step 3. As an application, we provide a non-existence result.

Details

ISSN :
17982383 and 1239629X
Volume :
37
Database :
OpenAIRE
Journal :
Annales Academiae Scientiarum Fennicae Mathematica
Accession number :
edsair.doi.dedup.....5cb374020387a715f99264ff9e60b3f3
Full Text :
https://doi.org/10.5186/aasfm.2012.3733