Back to Search
Start Over
A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group
- Source :
- Annales Academiae Scientiarum Fennicae Mathematica
- Publication Year :
- 2012
- Publisher :
- Finnish Academy of Science and Letters, 2012.
-
Abstract
- We prove that, if E is the Engel group and u is a stable solution of ∆Eu = f(u), then ˆ {∇Eu 6=0} |∇Eu|2 {( p + 〈 (Hu) ν, v 〉 |∇Eu| )2 + h } − J η ≤ ˆ E |∇Eη||∇Eu| for any test function η ∈ C∞ 0 (E). Here above, h is the horizontal mean curvature, p is the imaginary curvature and J := 2(X3X2uX1u−X3X1uX2u) + (X4u)(X1u−X2u) This can be interpreted as a geometric Poincare inequality, extending the work of [21, 22, 13] to stratified groups of step 3. As an application, we provide a non-existence result.
- Subjects :
- Work (thermodynamics)
Pure mathematics
Mean curvature
General Mathematics
010102 general mathematics
Mathematical analysis
Poincaré inequality
Curvature
01 natural sciences
010101 applied mathematics
symbols.namesake
Test functions for optimization
symbols
0101 mathematics
Geometric inequality
Engel group
Mathematics
Subjects
Details
- ISSN :
- 17982383 and 1239629X
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Annales Academiae Scientiarum Fennicae Mathematica
- Accession number :
- edsair.doi.dedup.....5cb374020387a715f99264ff9e60b3f3
- Full Text :
- https://doi.org/10.5186/aasfm.2012.3733