Back to Search
Start Over
Analysis of retinal nerve fiber layer birefringence in patients with glaucoma and diabetic retinopathy by polarization sensitive OCT
- Source :
- Biomedical Optics Express
- Publication Year :
- 2020
- Publisher :
- Optica Publishing Group, 2020.
-
Abstract
- The retinal nerve fiber layer (RNFL) is a fibrous tissue that shows form birefringence. This optical tissue property is related to the microstructure of the nerve fiber axons that carry electrical signals from the retina to the brain. Ocular diseases that are known to cause neurologic changes, like glaucoma or diabetic retinopathy (DR), might alter the birefringence of the RNFL, which could be used for diagnostic purposes. In this pilot study, we used a state-of-the-art polarization sensitive optical coherence tomography (PS-OCT) system with an integrated retinal tracker to analyze the RNFL birefringence in patients with glaucoma, DR, and in age-matched healthy controls. We recorded 3D PS-OCT raster scans of the optic nerve head area and high-quality averaged circumpapillary PS-OCT scans, from which RNFL thickness, retardation and birefringence were derived. The precision of birefringence measurements was 0.005°/µm. As compared to healthy controls, glaucoma patients showed a slightly reduced birefringence (0.129 vs. 0.135°/µm), although not statistically significant. The DR patients, however, showed a stronger reduction of RNFL birefringence (0.103 vs. 0.135°/µm) which was highly significant. This result might open new avenues into early diagnosis of DR and related neurologic changes.
- Subjects :
- medicine.medical_specialty
genetic structures
Nerve fiber layer
Glaucoma
Nerve fiber
01 natural sciences
Article
010309 optics
03 medical and health sciences
chemistry.chemical_compound
Ophthalmology
0103 physical sciences
medicine
030304 developmental biology
0303 health sciences
Retina
Birefringence
business.industry
Retinal
Diabetic retinopathy
medicine.disease
eye diseases
Atomic and Molecular Physics, and Optics
medicine.anatomical_structure
chemistry
Optic nerve
sense organs
business
Biotechnology
Subjects
Details
- ISSN :
- 21567085
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Biomedical Optics Express
- Accession number :
- edsair.doi.dedup.....5cd1dca94239304d92ca8dbf17765de3
- Full Text :
- https://doi.org/10.1364/boe.402475