Back to Search
Start Over
Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury
- Source :
- Semin Immunol
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Urinary bladder matrix (UBM) is used clinically for management of wounds and reinforcement of surgical soft tissue repair, among other applications. UBM consists of the lamina propria and basal lamina of the porcine urinary bladder, and is decellularized as part of the process to manufacture the medical device. UBM is composed mainly of Collagen I, but also contains a wide variety of fibrillar and basement membrane collagens, glycoproteins, proteoglycans and ECM-associated factors. Upon application of the biomaterial in a traumatic or nontraumatic setting in a mouse model, there is a cascade of immune cells that respond to the damaged tissue and biomaterial. Here, through the use of multicolor flow cytometry, we describe the various cells that infiltrate the UBM scaffold in a subcutaneous and volumetric muscle injury model. A wide variety of immune cells are found in the UBM scaffold immune microenvironment (SIM) including F4/80(+) macrophages, CD11c(+) dendritic cells, CD3(+) T cells and CD19(+) B cells. A systemic IL-4 upregulation and a local M2-macrophage response were observed in the proximity of the implanted UBM. The recruitment and activation of these cells is dependent upon signals from the scaffold and communication between the different cell types present.
- Subjects :
- 0301 basic medicine
Pathology
medicine.medical_specialty
Cell type
Proteome
Urinary Bladder
Immunology
CD11c
Biocompatible Materials
02 engineering and technology
Matrix (biology)
Regenerative Medicine
Article
Mice
03 medical and health sciences
Immune system
medicine
Animals
Humans
Immunology and Allergy
Basement membrane
Lamina propria
Decellularization
Tissue Engineering
Tissue Scaffolds
Chemistry
021001 nanoscience & nanotechnology
Extracellular Matrix
030104 developmental biology
medicine.anatomical_structure
Cellular Microenvironment
Models, Animal
Basal lamina
0210 nano-technology
Subjects
Details
- ISSN :
- 10445323
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- Seminars in Immunology
- Accession number :
- edsair.doi.dedup.....5d20ed8e6eed200660fdd4f3f7f63f15
- Full Text :
- https://doi.org/10.1016/j.smim.2017.05.002