Back to Search Start Over

Developments and Applications of Coil-Library-Based Residue-Specific Force Fields for Molecular Dynamics Simulations of Peptides and Proteins

Authors :
Yun-Dong Wu
Wei Kang
Hao-Nan Wu
Fan Jiang
Source :
Journal of Chemical Theory and Computation. 15:2761-2773
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Molecular dynamics (MD) simulation has become a powerful tool for studying the structures and functional mechanisms of biomolecules, and its reliability crucially depends on the accuracy of underlying force fields. This perspective describes our recent efforts to develop more accurate protein force fields by improving the description of intrinsic conformational preferences of amino acid residues using residue-specific dihedral-angle-related parameters. Both backbone and side-chain conformational distributions and their coupling were optimized to fit those from a protein coil library. The resulting force fields RSFF1 and RSFF2 have been found to be more accurate than popular protein force fields, in reproducing experimental structural data of various peptides and proteins. They have also been successfully used in studying folding mechanisms and refinement of structure models. Further methodology developments related to intrinsically disordered proteins (RSFF2+) and a more universal implementation (RSFF2C) based on CMAP potentials are also described.

Details

ISSN :
15499626 and 15499618
Volume :
15
Database :
OpenAIRE
Journal :
Journal of Chemical Theory and Computation
Accession number :
edsair.doi.dedup.....5d5e838f6c73ac26e1363067c4fb597c