Back to Search Start Over

On-line learning of predictive kernel models for urban water demand in a smart city

Authors :
Joaquín Izquierdo
David Ayala-Cabrera
Manuel Herrera
Rafael Pérez-García
Source :
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Publication Year :
2014
Publisher :
Elsevier, 2014.

Abstract

[EN] This paper proposes a multiple kernel regression (MKr) to predict water demand in the presence of a continuous source of infor- mation. MKr extends the simple support vector regression (SVR) to a combination of kernels from as many distinct types as kinds of input data are available. In addition, two on-line learning methods to obtain real time predictions as new data arrives to the system are tested by a real-world case study. The accuracy and computational efficiency of the results indicate that our proposal is a suitable tool for making adequate management decisions in the smart cities environment.<br />This work has been supported by project IDAWAS, DPI2009- 11591, of the Direccion General de Investigacion of the Ministerio de Ciencia e Innovacion of Spain, and ACOMP/ 2011/ 188 of the Conselleria d'Educacio of the Generalitat Valenciana.

Details

Language :
English
Database :
OpenAIRE
Journal :
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Accession number :
edsair.doi.dedup.....5d65ea63e861d822879891cc0851f196
Full Text :
https://doi.org/10.1016/j.proeng.2014.02.086