Back to Search Start Over

Photochemical isomerization reactions of acrylonitrile. A mechanistic study

Authors :
Ming-Der Su
Source :
RSC Advances. 8:5647-5651
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

The mechanisms for the photochemical isomerization reactions are determined theoretically using the acrylonitrile model molecule. The CASSCF (twelve-electron/eleven-orbital active space) and MP2-CAS methods are respectively used with the 6-311G(d,p) and 6-311++G(3df,3pd) basis sets. The structure of the conical intersection that plays a prominent role in the photoisomerization of acrylonitrile is obtained. The intermediates and the transition structures of the ground states are also calculated, to allow a qualitative explanation of the reaction pathways. These model studies suggest that the preferred reaction route is: acrylonitrile → Franck-Condon region → conical intersection → isoacrylonitrile → transition state → intermediate complex → transition state → cyanoacetylene. The theoretical evidence suggests that conical intersections found in this paper can give a better understanding of the photochemical reactions of acrylonitrile and support the experimental observations.

Details

ISSN :
20462069
Volume :
8
Database :
OpenAIRE
Journal :
RSC Advances
Accession number :
edsair.doi.dedup.....5d6794784163cd408963f45756485094
Full Text :
https://doi.org/10.1039/c7ra12614j