Back to Search Start Over

Machine learning to predict distal caries in mandibular second molars associated with impacted third molars

Authors :
Sung-Hwi Hur
Minkyung Kim
Jae Seok Lim
Eun-Young Lee
Somi Kim
Ji-Yeon Kang
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-7 (2021), Scientific Reports
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Impacted mandibular third molars (M3M) are associated with the occurrence of distal caries on the adjacent mandibular second molars (DCM2M). In this study, we aimed to develop and validate five machine learning (ML) models designed to predict the occurrence of DCM2Ms due to the proximity with M3Ms and determine the relative importance of predictive variables for DCM2Ms that are important for clinical decision making. A total of 2642 mandibular second molars adjacent to M3Ms were analyzed and DCM2Ms were identified in 322 cases (12.2%). The models were trained using logistic regression, random forest, support vector machine, artificial neural network, and extreme gradient boosting ML methods and were subsequently validated using testing datasets. The performance of the ML models was significantly superior to that of single predictors. The area under the receiver operating characteristic curve of the machine learning models ranged from 0.88 to 0.89. Six features (sex, age, contact point at the cementoenamel junction, angulation of M3Ms, Winter's classification, and Pell and Gregory classification) were identified as relevant predictors. These prediction models could be used to detect patients at a high risk of developing DCM2M and ultimately contribute to caries prevention and treatment decision-making for impacted M3Ms.

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....5dc4420414ebc74efa875b9cdcb3d0fb