Back to Search Start Over

Understanding Imbalanced Semantic Segmentation Through Neural Collapse

Authors :
Zhong, Zhisheng
Cui, Jiequan
Yang, Yibo
Wu, Xiaoyang
Qi, Xiaojuan
Zhang, Xiangyu
Jia, Jiaya
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.<br />Comment: Technical Report

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....5e3f02a4b24d7d0faa4da389df446287
Full Text :
https://doi.org/10.48550/arxiv.2301.01100