Back to Search Start Over

Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures

Authors :
Bryan Semon
Gombojav O. Ariunbold
Supriya Nagpal
Yuri V. Rostovtsev
Source :
Open Physics, Vol 19, Iss 1, Pp 234-240 (2021)
Publication Year :
2021
Publisher :
Walter de Gruyter GmbH, 2021.

Abstract

Hydrogen-bonded mixtures with varying concentration are a complicated networked system that demands a detection technique with both time and frequency resolutions. Hydrogen-bonded pyridine–water mixtures are studied by a time-frequency resolved coherent Raman spectroscopic technique. Femtosecond broadband dual-pulse excitation and delayed picosecond probing provide sub-picosecond time resolution in the mixtures temporal evolution. For different pyridine concentrations in water, asymmetric blue versus red shifts (relative to pure pyridine spectral peaks) were observed by simultaneously recording both the coherent anti-Stokes and Stokes Raman spectra. Macroscopic coherence dephasing times for the perturbed pyridine ring modes were observed in ranges of 0.9–2.6 ps for both 18 and 10 cm − 1 10\hspace{0.33em}{{\rm{cm}}}^{-1} broad probe pulses. For high pyridine concentrations in water, an additional spectral broadening (or escalated dephasing) for a triangular ring vibrational mode was observed. This can be understood as a result of ultrafast collective emissions from coherently excited ensemble of pairs of pyridine molecules bound to water molecules.

Details

ISSN :
23915471 and 20210027
Volume :
19
Database :
OpenAIRE
Journal :
Open Physics
Accession number :
edsair.doi.dedup.....5e6fbaf78d2cf761a05137d79dc0f6dd
Full Text :
https://doi.org/10.1515/phys-2021-0027