Back to Search
Start Over
Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy
- Source :
- Beilstein Journal of Nanotechnology, Vol 9, Iss 1, Pp 1844-1855 (2018), Beilstein Journal of Nanotechnology
- Publication Year :
- 2018
- Publisher :
- Beilstein-Institut, 2018.
-
Abstract
- A phase-locked loop (PLL) circuit is the central component of frequency modulation atomic force microscopy (FM-AFM). However, its response speed is often insufficient, and limits the FM-AFM imaging speed. To overcome this issue, we propose a PLL design that enables high-speed FM-AFM. We discuss the main problems with the conventional PLL design and their possible solutions. In the conventional design, a low-pass filter with relatively high latency is used in the phase feedback loop, leading to a slow response of the PLL. In the proposed design, a phase detector with a low-latency high-pass filter is located outside the phase feedback loop, while a subtraction-based phase comparator with negligible latency is located inside the loop. This design minimizes the latency within the phase feedback loop and significantly improves the PLL response speed. In addition, we implemented PLLs with the conventional and proposed designs in the same field programmable gate array chip and quantitatively compared their performances. The results demonstrate that the performance of the proposed PLL is superior to that of the conventional PLL: 165 kHz bandwidth and 3.2 μs latency in water. Using this setup, we performed FM-AFM imaging of calcite dissolution in water at 0.5 s/frame with true atomic resolution. The high-speed and high-resolution imaging capabilities of the proposed design will enable a wide range of studies to be conducted on various atomic-scale dynamic phenomena at solid–liquid interfaces.
- Subjects :
- Computer science
General Physics and Astronomy
02 engineering and technology
lcsh:Chemical technology
01 natural sciences
Phase detector
lcsh:Technology
Full Research Paper
0103 physical sciences
Electronic engineering
Nanotechnology
General Materials Science
lcsh:TP1-1185
Electrical and Electronic Engineering
Wideband
lcsh:Science
010302 applied physics
Atomic force microscopy
high-speed atomic-resolution imaging
lcsh:T
Bandwidth (signal processing)
Subtraction
Feedback loop
021001 nanoscience & nanotechnology
calcite dissolution process
lcsh:QC1-999
Phase-locked loop
Nanoscience
phase-locked loop
lcsh:Q
0210 nano-technology
Frequency modulation
lcsh:Physics
frequency modulation atomic force microscopy
Subjects
Details
- Language :
- English
- ISSN :
- 21904286
- Volume :
- 9
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Beilstein Journal of Nanotechnology
- Accession number :
- edsair.doi.dedup.....5e745829f232a40275e6107e94f36921