Back to Search Start Over

The Prisoner's Dilemma and polymorphism in yeast SUC genes

Authors :
Duncan Greig
Michael Travisano
Source :
Proceedings of the Royal Society of London. Series B: Biological Sciences. 271
Publication Year :
2004
Publisher :
The Royal Society, 2004.

Abstract

The SUC multigene family of the single-celled yeast Saccharomyces cerevisiae is polymorphic, with genes varying both in number and activity. All of the genes encode invertase, an enzyme that is secreted to digest sucrose outside of the cell. This communal endeavour creates the potential for individual cells to defect (cheat) by stealing the sugar digested by their neighbours without contributing the enzyme themselves. We measured the fitness of a defector, with a deleted suc2 gene, relative to an otherwise isogenic cooperator, with a functional SUC2 gene. We manipulated the level of social interaction within the community by varying the population density and found that the defector is less fit than the cooperator at low levels of sociality but more fit in dense communities. We propose that selection for antisocial cheating causes SUC polymorphism in nature. The infamous Prisoner's Dilemma game shows that social behaviour is generally unstable, and the success of both cooperation and defection can vary continuously in time and space. The variation in SUC genes reflects constant adaptation to an ever-changing biotic environment that is a consequence of the instability of cooperation. It is interesting that social interactions can have a direct effect on molecular evolution, even in an organism as simple as yeast.

Details

ISSN :
14712954 and 09628452
Volume :
271
Database :
OpenAIRE
Journal :
Proceedings of the Royal Society of London. Series B: Biological Sciences
Accession number :
edsair.doi.dedup.....5f54280fe4cd826193d6a78847b49b01
Full Text :
https://doi.org/10.1098/rsbl.2003.0083