Back to Search
Start Over
Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities
- Source :
- The ISME Journal
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Surveys of 16S rRNA gene sequences derived from marine sediments have indicated that a widely distributed group of Gammaproteobacteria, named “JTB255-Marine Benthic Group” (now the candidate order Woeseiales), accounts for 1–22% of the retrieved sequences. Despite their ubiquity in seafloor communities, little is known about their distribution and specific ecological niches in the deep sea, which constitutes the largest biome globally. Here, we characterized the phylogeny, environmental distribution patterns, abundance, and metabolic potential of Woeseiales bacteria with a focus on representatives from the deep sea. From a phylogenetic analysis of publicly available 16S rRNA gene sequences (≥1400 bp, n = 994), we identified lineages of Woeseiales with greater prevalence in the deep sea than in coastal environments, a pattern corroborated by the distribution of 16S oligotypes recovered from 28 globally distributed sediment samples. Cell counts revealed that Woeseiales bacteria accounted for 5 ± 2% of all microbial cells in deep-sea surface sediments at 23 globally distributed sites. Comparative analyses of a genome, metagenome bins, and single-cell genomes suggested that members of the corresponding clades are likely to grow on proteinaceous matter, potentially derived from detrital cell membranes, cell walls, and other organic remnants in marine sediments.
- Subjects :
- Geologic Sediments
Biome
Microbiology
Deep sea
Article
Microbial ecology
03 medical and health sciences
Phylogenetics
RNA, Ribosomal, 16S
Gammaproteobacteria
Marine microbiology
14. Life underwater
Phylogeny
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
Ecological niche
0303 health sciences
Bacteria
biology
Phylogenetic tree
030306 microbiology
Ecology
Genetic Variation
Sequence Analysis, DNA
biology.organism_classification
13. Climate action
Benthic zone
Metagenomics
Metagenome
Subjects
Details
- ISSN :
- 17517370 and 17517362
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- The ISME Journal
- Accession number :
- edsair.doi.dedup.....5fe1deafa01259c4207a20711a62f1d9
- Full Text :
- https://doi.org/10.1038/s41396-020-0588-4