Back to Search Start Over

Proteomics-Based Mechanistic Investigation of Escherichia coli Inactivation by Pulsed Electric Field

Authors :
Xiaojing Shi
Yanbo Song
Liyan Jia
Yong Peng
Yuanyuan Lu
Liu Zhenyu
Qin Zhang
Lingying Zhao
Nan Huo
Li Linwei
Source :
Frontiers in Microbiology, Vol 10 (2019), Frontiers in Microbiology
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

The pulsed electric field (PEF) technology has been widely applied to inactivate pathogenic bacteria in food products. Though irreversible pore formation and membrane disruption is considered to be the main contributing factor to PEF’s sterilizing effects, the exact molecular mechanisms remain poorly understood. In this study, by using mass spectrometry (MS)-based label-free quantitative proteomic analysis, we compared the protein profiles of PEF-treated and untreated Escherichia coli. We identified a total of 175 differentially expressed proteins, including 52 candidates that were only detected in at least two of the three samples in one experiment group but not in the other group. Functional analysis revealed that the differential proteins were primarily involved in the regulation of cell membrane composition and integrity, stress response, as well as various metabolic processes. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis was conducted on the genes of selected differential proteins at varying PEF intensities, which were known to result in different cell killing levels. The qRT-PCR data confirmed that the proteomic results could be reliably used for further data interpretation, and that the changes in the expression levels of the differential candidates were, to a large extent, caused directly by the PEF treatment. The findings of the current study offered valuable insight into PEF-induced cell inactivation.

Details

Language :
English
Volume :
10
Database :
OpenAIRE
Journal :
Frontiers in Microbiology
Accession number :
edsair.doi.dedup.....5fe9328b04e773369b8e0d62cd51524f