Back to Search Start Over

The Vortex-like Behavior of the Riemann Zeta Function to the Right of the Critical Strip

Authors :
J. M. Sepulcre
T. Vidal
Universidad de Alicante. Departamento de Matemáticas
Curvas Alpha-Densas. Análisis y Geometría Local
Source :
RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
Publication Year :
2021
Publisher :
Springer Nature, 2021.

Abstract

Based on an equivalence relation that was established recently on exponential sums, in this paper we study the class of functions that are equivalent to the Riemann zeta function in the half-strip $\{s\in\mathbb{C}:\operatorname{Re}s>1\}$. In connection with this class of functions, we first determine the value of the maximum abscissa from which the images of any function in it cannot take a prefixed argument. The main result shows that each of these functions experiments a vortex-like behavior in the sense that the main argument of its images varies indefinitely near the vertical line $\operatorname{Re}s=1$. In particular, regarding the Riemann zeta function $\zeta(s)$, for every $\sigma_0>1$ we can assure the existence of a relatively dense set of real numbers $\{t_m\}_{m\geq 1}$ such that the parametrized curve traced by the points $(\operatorname{Re}(\zeta(\sigma+it_m)),\operatorname{Im}(\zeta(\sigma+it_m)))$, with $\sigma\in(1,\sigma_0)$, makes a prefixed finite number of turns around the origin.<br />Comment: 8 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
Accession number :
edsair.doi.dedup.....5fed7e14989b5286e205f8d0a7f72664