Back to Search
Start Over
The Vortex-like Behavior of the Riemann Zeta Function to the Right of the Critical Strip
- Source :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Publication Year :
- 2021
- Publisher :
- Springer Nature, 2021.
-
Abstract
- Based on an equivalence relation that was established recently on exponential sums, in this paper we study the class of functions that are equivalent to the Riemann zeta function in the half-strip $\{s\in\mathbb{C}:\operatorname{Re}s>1\}$. In connection with this class of functions, we first determine the value of the maximum abscissa from which the images of any function in it cannot take a prefixed argument. The main result shows that each of these functions experiments a vortex-like behavior in the sense that the main argument of its images varies indefinitely near the vertical line $\operatorname{Re}s=1$. In particular, regarding the Riemann zeta function $\zeta(s)$, for every $\sigma_0>1$ we can assure the existence of a relatively dense set of real numbers $\{t_m\}_{m\geq 1}$ such that the parametrized curve traced by the points $(\operatorname{Re}(\zeta(\sigma+it_m)),\operatorname{Im}(\zeta(\sigma+it_m)))$, with $\sigma\in(1,\sigma_0)$, makes a prefixed finite number of turns around the origin.<br />Comment: 8 pages
- Subjects :
- Análisis Matemático
Almost periodic functions
Mathematics - Number Theory
Mathematics - Complex Variables
Applied Mathematics
Mathematics (miscellaneous)
11M06, 42A75, 30B50, 11K60, 30D20, 30Axx
FOS: Mathematics
Vortex-like behavior
Riemann zeta function
Exponential sums
Bohr’s equivalence relation
Number Theory (math.NT)
Complex Variables (math.CV)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA)
- Accession number :
- edsair.doi.dedup.....5fed7e14989b5286e205f8d0a7f72664