Back to Search Start Over

The Profiled Feldman-Cousins technique for confidence interval construction in the presence of nuisance parameters

Authors :
Acero, M. A.
Acharya, B.
Adamson, P.
Aliaga, L.
Anfimov, N.
Antoshkin, A.
Arrieta-Diaz, E.
Asquith, L.
Aurisano, A.
Back, A.
Backhouse, C.
Baird, M.
Balashov, N.
Baldi, P.
Bambah, B. A.
Bashar, S.
Bat, A.
Bays, K.
Bernstein, R.
Bhatnagar, V.
Bhattarai, D.
Bhuyan, B.
Bian, J.
Booth, A. C.
Bowles, R.
Brahma, B.
Bromberg, C.
Buchanan, N.
Butkevich, A.
Calvez, S.
Carroll, T. J.
Catano-Mur, E.
Chatla, A.
Chirco, R.
Choudhary, B. C.
Choudhary, S.
Christensen, A.
Coan, T. E.
Colo, M.
Cremonesi, L.
Davies, G. S.
Derwent, P. F.
Ding, P.
Djurcic, Z.
Dolce, M.
Doyle, D.
Dueñas Tonguino, D.
Dukes, E. C.
Dye, A.
Ehrlich, R.
Elkins, M.
Ewart, E.
Feldman, G. J.
Filip, P.
Franc, J.
Frank, M. J.
Gallagher, H. R.
Gandrajula, R.
Gao, F.
Giri, A.
Gomes, R. A.
Goodman, M. C.
Grichine, V.
Groh, M.
Group, R.
Guo, B.
Habig, A.
Hakl, F.
Hall, A.
Hartnell, J.
Hatcher, R.
Hausner, H.
He, M.
Heller, K.
Hewes, V.
Himmel, A.
Jargowsky, B.
Jarosz, J.
Jediny, F.
Johnson, C.
Judah, M.
Kakorin, I.
Kaplan, D. M.
Kalitkina, A.
Kleykamp, J.
Klimov, O.
Koerner, L. W.
Kolupaeva, L.
Kotelnikov, S.
Kralik, R.
Kullenberg, Ch
Kubu, M.
Kumar, A.
Kuruppu, C. D.
Kus, V.
Lackey, T.
Lang, K.
Lasorak, P.
Lesmeister, J.
Lin, S.
Lister, A.
Liu, J.
Lokajicek, M.
Lopez, J. M. C.
Mahji, R.
Magill, S.
Plata, M. Manrique
Mann, W. A.
Manoharan, M. T.
Marshak, M. L.
Martinez-Casales, M.
Matveev, V.
Mayes, B.
Mehta, B.
Messier, M. D.
Meyer, H.
Miao, T.
Mikola, V.
Miller, W. H.
Mishra, S.
Mishra, S. R.
Mislivec, A.
Mohanta, R.
Moren, A.
Morozova, A.
Mu, W.
Mualem, L.
Muether, M.
Mulder, K.
Naples, D.
Nath, A.
Nayak, N.
Nelleri, S.
Nelson, J. K.
Nichol, R.
Niner, E.
Norman, A.
Norrick, A.
Nosek, T.
Oh, H.
Olshevskiy, A.
Olson, T.
Ott, J.
Pal, A.
Paley, J.
Panda, L.
Ryan Patterson
Pawloski, G.
Pershey, D.
Petrova, O.
Petti, R.
Phan, D. D.
Plunkett, R. K.
Pobedimov, A.
Porter, J. C. C.
Rafique, A.
Prais, L. R.
Raj, V.
Rajaoalisoa, M.
Ramson, B.
Rebel, B.
Rojas, P.
Roy, P.
Ryabov, V.
Samoylov, O.
Sanchez, M. C.
Sánchez Falero, S.
Shanahan, P.
Sharma, P.
Shukla, S.
Sheshukov, A.
Singh, I.
Singh, P.
Singh, V.
Smith, E.
Smolik, J.
Snopok, P.
Solomey, N.
Sousa, A.
Soustruznik, K.
Strait, M.
Suter, L.
Sutton, A.
Swain, S.
Sweeney, C.
Sztuc, A.
Tapia Oregui, B.
Tas, P.
Temizel, B. N.
Thakore, T.
Thayyullathil, R. B.
Thomas, J.
Tiras, E.
Tripathi, J.
Trokan-Tenorio, J.
Torun, Y.
Urheim, J.
Vahle, P.
Vallari, Z.
Vasel, J.
Vrba, T.
Wallbank, M.
Warburton, T. K.
Wetstein, M.
Whittington, D.
Wickremasinghe, D. A.
Wieber, T.
Wolcott, J.
Wrobel, M.
Wu, W.
Xiao, Y.
Yaeggy, B.
Dombara, A. Yallappa
Yankelevich, A.
Yonehara, K.
Yu, S.
Yu, Y.
Zadorozhnyy, S.
Zalesak, J.
Zhang, Y.
Zwaska, R.
Source :
INSPIRE-HEP

Abstract

Measuring observables to constrain models using maximum-likelihood estimation is fundamental to many physics experiments. The Profiled Feldman-Cousins method described here is a potential solution to common challenges faced in constructing accurate confidence intervals: small datasets, bounded parameters, and the need to properly handle nuisance parameters. This method achieves more accurate frequentist coverage than other methods in use, and is generally applicable to the problem of parameter estimation in neutrino oscillations and similar measurements. We describe an implementation of this method in the context of the NOvA experiment.<br />19 pages, 12 figures

Details

Database :
OpenAIRE
Journal :
INSPIRE-HEP
Accession number :
edsair.doi.dedup.....60243886a85cb3ce53f09fbe56dc54dc